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Two-Body Mass-Shell Constraints in a Constant
Magnetic Field (Neutral Case)
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A constant homogeneous magnetic field is applied to a composite system made
up of two scalar particles with opposite charges. Motion is described by a pair
of coupled Klein–Gordon equations that are written in closed form with help of
a suitable representation. The relativistic symmetry associated with the magnetic
field is carefully respected. Considering eigenstates of the pseudomomentum
four-vector, we separate out collective variables and obtain a three-dimensional
reduced equation, posing a nonconventional eigenvalue problem. The velocity
of the system as a whole (with respect to the frames where the field is purely
magnetic) generates “motional terms” in the formulas; these terms are taken into
account within a manifestly covariant framework.

1. INTRODUCTION

The theory of many-particle systems in external fields requires particular
caution, even in the simple framework of nonrelativistic mechanics: as soon
as all the constituent masses are of comparable magnitude, it becomes difficult
to disentangle the dynamics of relative variables from the motion of the
center of mass.

The case of a globally neutral system of charges imbedded in a constant
homogeneous magnetic field is of special interest, however, because (under
very general assumptions) it enjoys this property that the total
pseudomomentum

›
C 5 (

›
p 1 e

›
A is conserved and has mutually commuting

components [1–4]. This exceptional circumstance enables us to separate, in
a generalized sense, relative motion, and therefore provides a clear-cut defini-
tion of what is the spectrum of the system [4]. Relativistic corrections have
been considered [3] in a three-dimensional framework; this is certainly suffi-

1 Laboratoire de Gravitation et Cosmologie Relativistes CNRS/ER 2057, Université Pierre et
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cient in a large number of applications, but fails to account for the relativistic
symmetry. Indeed the constant magnetic field has the peculiarity that it does
not correspond to a unique “laboratory frame.” When a constant homogeneous
electromagnetic field is seen as purely magnetic in some frame (convention-
ally referred to as the lab frame), such a frame cannot be unique [5], thus total
energy, if defined as the (conserved) time component of linear momentum, is
affected by this ambiguity. All the directions eligible for the time axis of a
possible lab frame span a two-dimensional plane (EL) with hyperbolic metric;
so we are led to pay attention to special Lorentz transformations in this
“longitudinal plane.” Thus a four-dimensional spacetime approach is war-
ranted in order to keep under control the full relativistic symmetry of motion.

In this paper we focus on two-body systems because the covariant
methods of relativistic particle dynamics are well understood and more tracta-
ble in this case. In previous works [5, 6] we have indicated how the mass-
shell constraints for two scalar particles undergoing mutual interaction can
be minimally coupled (in closed form and remaining compatible) with an
external electromagnetic field Fmn which can be either pure electric or pure
magnetic. In both cases a four-vector Ca called pseudomomentum is con-
served and for neutral systems its four components commute among them-
selves. Writting down explicit equations of motion requires that we go to a
new representation, adapted to the symmetries of the external field.

When, as we assume here, Fmn is purely magnetic,2 a further change
of representation eliminates not only the collective variables conjugate to
pseudomomentum, but also a fifth variable which is nothing but relative time.
The outcome is a manifestly covariant equation to be solved for a reduced
wave function which depends only on three spacelike degrees of freedom.
The material that we published so far [5] was limited to the general lines of
this approach.

In this article we explicitly carry out the change of representation and
write down the reduced wave equation in a tractable form, showing the details
of the various contributions it contains. In addition, we discuss whether the
reduced wave equation can be considered as an eigenvalue problem, and for
which parameter. We prepare an eventual perturbation theory which will
ultimately result in a covariant framework for the spectroscopy of two-
body systems.

In Section 2 we display the notation used and we recall several results
from previous work. Section 3 is devoted to the explicit reduction of the
number of degrees of freedom, and to a qualitative discussion about the

2 We say that a field is pure electric (resp. pure magnetic) when there exist frames where the
field appears to be so; of course, these two situations exclude one another.
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various terms arising in the reduced wave equation. Section 4 contains con-
cluding remarks and an outlook.

2. BASIC EQUATIONS, SYMMETRIES

When pair creation can be neglected, a system of two scalar particles
can be described by a pair of coupled Klein–Gordon equations

2HaC 5 m2
aC, a, b 5 1, 2

referred to as the mass-shell constraints. Here C has two arguments q1, q2

running in spacetime. We cover all cases of practical interest assuming that
Ha 5 Ka 1 V. In the above formula 2Ka 5 ( pa 2 eaA(a))2 is the squared-
mass operator for particle a alone in the magnetic field, and V is a suitable
modification of the term V(0) which would describe the mutual interaction in
the absence of an external field; this modification is necessary in order to
keep the mass-shell constraints mutually compatible when the field Fab

is applied.
For all vectors j, h we write j?F?h for jaFabhb. With a similar convention

A(a) 5 1/2 qa ? F in a Lorentz-covariant gauge.
Notice that j?hL 5 jL?hL and j?hT 5 jT?hT.
An important technical point is that applying a constant magnetic field

provides a unique and invariant decomposition of any four-vector j into
longitudinal and transverse parts, say j 5 jL 1 jT. The orthocomplement of
(EL) in the space of four-vectors is a two-dimensional plane (ET) endowed
with elliptic metric. In any adapted frame, jL (resp. jT) has nonvanishing
coordinates j0, j3 (resp. j1, j2).

The theory of relativistic two-body systems, formulated many years ago
along the lines of “predictive mechnics” and “constraints theory” [7–9],3 has
been more recently extended to cases where some external field is present
[5, 11]. Here we assume that a constant homogeneous magnetic field is
applied to a pair of opposite charges, say e1 5 2e2 5 e.

The constraint approach employed here has several advantages over the
Bethe–Salpeter equation; for example, in the particular case of isolated sys-
tems (no field applied) the dependence on relative time gets automatically
factorized out [12].

It is convenient to rearrange the canonical variables as follows:

3 Coupled wave equations have been considered also in Refs. 10.
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z 5 q1 2 q2 Q 5
1
2

(q1 1 q2)

y 5
1
2

( p1 2 p2) P 5 p1 1 p2

so [z, y] 5 [Q, P] 5 2id, etc.
The Lie algebra of the Lorentz group is generated by the tensor

M 5 M1 1 M2 5 Q ` P 1 z ` y

with M1 5 q1 ∧ p1, M2 5 q2 ∧ p2. In any adapted frame, rotations in (ET)
are generated by M12 and boosts in (EL) by M03.

An essential ingredient of mutual interactions [7] is the quantity z̃2 5
z2 2 (z ? P)2/P2. But in order to avoid denominators in calculations, it is
convenient to employ

Z 5 z2P2 2 (z ? P)2 (1)

We shall assume that

V (0) 5 f(Z, P2, y ? P) (2)

This form is general enough to accommodate a large class of interactions.

Definition. When speaking of energy-dependent interactions, we refer
to the total energy of isolated systems, namely !P2.

Although Z is more practical for calculations, it would be more natural
to take z̃2 and P2 as independent dynamical variables, defining g(Z/P2, P2, y
? P) 5 f(Z, P2, y ? P). Therefore we say that V (0) does not depend on (total)
energy when the function f takes on the form f 5 g(Z/P2, y ? P).

Although f in (2) is supposed to be known, it would be a problem to
determine V in closed form. In the external-field representation, which
involves a new wave function C8 and new operators H8a, K8b, V 8, this problem
is solved by making the ansatz

V 8 5 f(Ẑ, P2, yL ? PL) (3)

where Ẑ 5 Z8(0) 5 (Z 8)F50 (it turns out that Ẑ commutes with yL ? PL). The
explicit form of Ẑ was calculated in ref. 5:

Ẑ 5 Z 1 2 (P2
L z ? P 2 P2 zL ? PL) L 1 P2

T P2
L L2 (4)

where the scalar L is defined as

L 5
PL ? z
(PL)2 (5)

The equations of motion are compatible provided [5] that Ẑ commutes with
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yL ? PL. Let us transform (4) in order to render this commutation property
manifest. First we split z as the sum of zL and zT in Z; hence,

Z 5 (z2
T 1 z2

L)P2 2 (zT ? P)2 2 (zL ? P)2 2 2(zT ? P)(zL ? P) (6)

Develop (4) and perform elementary manipulations using (6). We get

Ẑ 5 Z 1 2 (zT ? P)(zL ? P) 2 (zL ? P)2
P2

T

P2
L

Using (6), we notice cancellation of the terms proportional to (zT ? P) (zL ?
P) and we can write

Ẑ 5 z2
TP2 2 (zT ? P)2 1 P2 1z2

L 2
(zL ? PL)2

P2
L

2 (7)

It is convenient to define the projector “orthogonal” to PL , say

Va
b 5 da

b 2
Pa

LPLb

P2
L

(8)

because we can write

z2
L 2

(zL ? PL)2

P2
L

5 (VzL)2 (9)

and we easily check that (Vz)a commutes with ( yL ? PL). So we have

Ẑ 5 z2
TP2 2 (zT ? P)2 1 (VzL)2P2 (10)

which justifies the claim that Ẑ commutes with yL?PL. Here we notice that
VzT 5 zT and

(Vz)2 5 z2
T 1 (VzL)2 (11)

Thus we finally obtain

Ẑ 5 (Vz)2P2 2 (zT ? P)2 (12)

which is much more tractable than formula (4).
Mass-shell constraints can be replaced by their sum and difference, so

we set

m 5
1
2

(m2
1 1 m2

2), n 5
1
2

(m2
1 2 m2

2)

The explicit form of K81 and K82 was given in ref. 5. Equations (3.36) of ref.
5 yield in the present notation4

4 To prevent confusion, we now avoid using the vector La introduced in ref. 5, because L ? L
was distinct from the square of the scalar function L.
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K81 1 K82 5 K1 1 K2 2 2T
yL ? PL

P2
L

1
T 2

(PL)2 (13)

where

T 5 K1 2 K2 2 yL ? PL (14)

and the difference is

K81 2 K82 5 yL ? PL (15)

It is noteworthy that M03 and M12 are not affected by going over to the
external-field representation. In other words, we can write

M 812 5 M12, M 803 5 M03 (16)

Indeed the transformation from C to C8 is formally generated by B 5 LT,
where L and T are given by (5) and (14), respectively.5 Commutation of L
with M12 and M03 is obvious. For commutation of T, the only point to be
checked is that K1 2 K2 actually commutes with M12. But Ka 5 K(a), where
K(a) is the (half-squared) squared-mass operator for particle a alone in the
field. We know the constants of the motion in the one-body sector [14]. In
particular, we know that Ka commutes with both (Ma)03 and (Ma)12. Thus T
commutes with M03 and M12. Finally, B shares the same property, which
formally proves (16). Let us prove the following:

Proposition. Angular momentum in (ET) and boost in (EL) are constants
of the motion.

In other words, we claim that our squared-mass operators both commute
with the transverse and longitudinal components of the total angular
momentum.

Working in the external-field representation, all we need is to prove that
M03 and M12 commute with both K8a 1 V 8, or equivalently, with K81 1 K82 1
2V 8 and with yL ? PL. Commutation with K81 and K82 separately is ensured
from the properties of single-particle motion in the field. Moreover, yL ? PL

is invariant under any spacetime rotation. The last point to check is whether
M03 and M12 actually commute with V 8. It is sufficient that they commute
with all arguments of f in formula (3), which is true because these three
arguments are manifestly Lorentz-invariant.

For completeness, we recall here that pseudomomentum, originally rep-
resented by

5 For a more rigorous exposition we should start with C8 from the outset. See ref. 13.
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C 5 P 1
e
2

z ? F

keeps the same expression in the external-field representation (C8 5 C ), and
is also conserved [5].

2.1. Ultimate Representation

For neutral systems, a further transformation inspired by the work of
Grotch and Hegstrom [3], and similar to a gauge transformation, enables you
to get rid of the Q variables. Transforming the wave function yields C9 5
(exp iG)C8 with the help of the unitary transformation generated by

G 5
e
2

(z ? F ? Q) (17)

We set

2# 5 exp(iG) 2 exp(2iG), 29 5 (28)# ∀2 (18)

The new equations of motion

(H 91 1 H 92)C9 5 mC9 (19)

yL ? PLC9 5 nC9 (20)

may “look like” they are translation invariant, although they are not. The
reason is that pseudomomentum is transformed to Pa by (18), that is, C 9 5
P. Of course, P is no longer the generator of spacetime translations. These
transformations now have a generator P 9 which differs from P because G in
(17) is not translation-invariant. In the ultimate representation considered
here C 9 generates the relativistic analog of the so-called “twisted translations”
invoked in ref. 4.

From now on we demand that pseudomomentum be diagonal with a
timelike four-vector ka as eigenvalue. Instead of CaC 5 kaC, we are using
our ultimate representation and write PaC9 5 kaC9. Combining this require-
ment with (20), we obtain

C9 5 exp(ik ? Q) exp1in
zL ? kL

.kL. 2f (21)

where f depends on z, but only through its projection orthogonal to kL , and
additionally depends on k and on n as parameters. In other words f 5 f(n,
k, Ãz) with the following notation.

Notation. For all four-vectors j, we define Ãj as the projection of j
onto the 3-plane orthogonal to kL , say (Ãj)a 5 ja 2 (j ? kL) ka

L /k2
L. Similarly,
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j' denotes the projection of j onto the 3-plane orthogonal to k. In general,
Ãz Þ z', but they coincide when kT vanishes.

It is convenient to introduce here the motional parameter e 5 .kT./.kL..
When e does not vanish, a number of terms involving the contraction k ? F
arise. In fact (k ? F )a 5 .k.Ea, where Ea is the electric field seen by an
inertial observer moving with constant momentum ka (motional electric field ).
We have the identity

1
k2

L
5

1
k2 (1 2 e2) (22)

Notice that kT is linear in e because we can write kT 5 eLkL where the
second-rank tensor L represents the boost from the direction of kL to the
direction of kT (thus L ? L 5 d).

2.2. Explicit Formulas

The reduced (or internal) wave function f must be determined through
the “sum equation” (H91 1 H92) C9 5 mC9, simplified with help of (21).

Given the function f involved in (2), let us display H 91 1 H 92 in detail.
It is clear that

H 91 1 H 92 5 K 91 1 K 92 1 2V 9 (23)

so we have to transform (K81 1 K82) and V 8 according to (18). We find that
Q and z are unchanged, whereas

P# 5 P 1
e
2

F ? z, P#
L 5 PL (24)

y# 5 y 2
e
2

F ? Q (25)

P#2
5 P2 1 eP ? F ? z 1

e2

4
(F ? z)2 (26)

(K1 1 K2)# 5
P2

4
1 y2 2

e
2

z ? F ? P 1
e2

4
(z ? F )2 (27)

T # 5 yT ? PT 2 2ez ? F ? y (28)

Now we apply transformation (18) to (13), taking (27) and (28) into account.
It gives

K91 1 K92 5
P2

4
1 y2 2

e
2

z ? F ? P 1
e2

4
(z ? F )2 1

T #

P2
L

(T # 2 2yL ? PL) (29)

with T # given by (28). We know that 2V 9 must be added to this expression
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in order to obtain H 91 1 H 92. But in (17), Fmn is purely transverse, therefore
( yL ? PL)# 5 y ? PL. We have by (3)

V 9 5 f (Ẑ #, P#2
, yL ? PL) (30)

where P#2
is as in (26) and we must compute Ẑ # from (10) with help of (24).

[We make the convention that Ẑ # 5 (Ẑ )# and not the reverse.]
To this end, we apply the transformation (18) to Eq. (10). A glance at

(9) shows that (VzL)2 is not affected by the transformation. Recall that z is
unchanged; we notice that zT ? P# 5 zT ? P because, F being purely transverse,
zT ? F ? z identically vanishes. Thus, using (11), we obtain

Ẑ # 5 P#2
(Vz)2 2 (zT ? P)2 (31)

Now, Eqs. (23), (29), and (30) supplemented with (26) and (31) furnish the
complete expression of H 91 1 H 92 to be inserted into (19). At this stage we
are in a position to carry out the reduction.

3. THREE-DIMENSIONAL REDUCTION

3.1. Calculations

After transformation to the ultimate representation we have obtained
C 9 5 P. Calculations can be organized as follows: Whereas (20) fixes the
dependence in the relative time, Eq. (21) allows us to factorize out the “center-
of-mass motion,” and we are left with the reduced wave function f which
arises in Eq. (21). Obviously, (20) implies that

yL ? kLf 5 nf (32)

Thus f depends on z only through its projection Ãz. It is clear that f generally
depends on n and k as parmeters.

In searching for a reduced wave equation, we replace Pa and yL ? PL ,
respectively, by their eigenvalues ka and n in H 91 1 H 92, and we divide by
exponential factors. For any operator 2 it is convenient to use the follow-
ing convention:

(2)n,k 5 2.yL?PL5n,P5k (33)

The subscript k refers to the vector k, which finally contributes by its longitudi-
nal piece only. In this procedure, a term like y2 must be written as y2 [ (Vy)2

1 ( yL ? PL)2/P2
L. If we now introduce the projector Ã orthogonal to kL and

use the identity (22), we obtain, for instance, with help of (32)

1P2

4
1 y22

n,k

5
k2

4
1 (Ãy)2 1

n2

k2
L

5
k2

4
1 (Ãy)2 1

n2

k2 2 e2 n2

k2 (34)

which is to be taken into account when computing (K 91 1 K 92)n,k from (29).
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According to (23), we have (H 91 1 H 92)n,k 5 (K 91 1 K 92)n,k 1 2(V 9)n,k.
Defining

R(n, kL , kT) 5 (K 91 1 K 92)n,k (35)

W(n, kL , kT) 5 (V 9)n,k (36)

Recalling (23), we can reduce Eq. (19) to

Rf 1 2Wf 5 mf (37)

Let us stress that m is just a parameter fixed from the outset. As other
parameters arise in (37), namely k and e, the question of whether (37) can
be considered as a spectral problem, and for which eigenvalue, is not yet
settled and will be considered later, with help of Eqs. (41) and (46). See Eq.
(45) below.

Since f depends on z only through Ãz, it is important to realize that
neither R nor W involves the operator zL ? kL. This will be checked below
and will permit us to consider Eq. (37) as a three-dimensional problem
involving operators R and W acting on functions of Ãz.

The explicit expression of R comes from (29), with help of (35). Since
K91 and K92 are no more than quadratic in the field strength, let us make the
convention that the superscripts (1) and (2), respectively, refer to the (homoge-
neous) linear and quadratic terms in the field. We start from (29), compute
K91 1 K92 to be inserted into (23), and further simplify with help of convention
(33). The zeroth-order contribution to R is

R(0) 5
k2

4
1

n2

k2
L

1 (Ãy)2 1 yT ? kT
yT ? kT 2 2n

k2
L

(38)

Applying again identity (22) and setting

(S)n,k 5 (Ãy)2 1 ( yT ? kT)
yT ? kT 2 2n

k2
L

2 e2 n2

k2 (39)

we can write

R(0) 5
k2

4
1

n2

k2 1 (S)n,k (40)

It is convenient to define

l 5
k2

4
1

n2

k2 2 m (41)

so we can write
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R(0) 5 l 1 m 1 (S)n,k (42)

The field-dependent terms in (29) provide

R(1) 5 4e(z ? F ? y)
n
k2

L
2

e
2

z ? F ? k (43)

R(2) 5
e2

4
(z ? F )2 1 4e2 (z ? F ? y)2

k2
L

(44)

We remember that F is purely transverse. Contractions involving F only
depend on the transverse components; for instance, F ? k is just a combination
of the quantities ka

T. It is noteworthy that only the transverse components of
z, y arise in R(1), R(2), whereas (S)n,k depends on Ãy and yT. As a whole, R
depends only on Ãz and Ãy (recall yT , zT are pieces of Ãy, Ãz, respectively).

In view of (42)–(44), Eq. (37) may be finally written

lf 1 [(S)n,k 1 R(1) 1 R(2) 1 2W ] f 5 0 (45)

The square bracket in (45) is nothing but (2N 9)nk provided, in the original
representation, we introduce the conserved quantity

2N 5
1
4

C2 1 (C2)21(H1 2 H2)2 2 (H1 1 H2) (46)

now represented by the operator

2N9 5
P2

4
1

(H 91 2 H 92)2

P2 2 (H 91 1 H 92)

and intimately related with the energy of relative motion.
The last term to be evaluated in (45) is W. In view of (36) we first have

to write down the expression for V 9, say (30). It follows that

W 5 f ((Ẑ #)n,k, (P#)2
n,k, n) (47)

In this formula (P#)2 is given by (26) and Ẑ # by (31). Making the substitutions
P → k and yL ? PL → n, hence V → Ã, we obtain

(Ẑ #)n,k 5 (P#)2
n,k(Ãz)2 2 (zT ? k)2 (48)

(P#2
)n,k 5 k2 1 ek ? F ? z 1

e2

4
(F ? z)2 (49)

It is clear that W does not involve the operator z ? kL. Formulas (48) and
(49) are to be inserted into (47), then the explicit form of W will come out.

It is natural to consider (45) as an equation for the eigenvalue l. But
we meet a complication because l is not independent of k2. In fact we can
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solve (41) for k2 and insert the result6 into (N9)n,k. As a result, (45) bears a
nonlinear dependence on l. A similar situation was pointed out by Rizov et
al. [16] in the case of isolated systems undergoing energy-dependent interac-
tions. In the presence of a magnetic field, however, the reduced wave equation
is nonlinear in l, even in the simple case where the mutual interaction term
V(10) does not depend on P2. This can be seen as follows: first, we notice
that the occurence of (Ẑ#)n,k in W brings out a dependence on k2, k2

L. Second,
we observe an inescapable dependence on k2, k2

L in formulas (39), (43), and
(44). We end up with a nonconventional spectral problem which requires
special treatment, reserved for future work.

3.2. Discussion

Finally, the mass-shell constraints have been reduced to the three-dimen-
sional problem of solving (45). This formula is nonlinear in the field strength
and might be applied to strong fields.7 Let us review the various contributions
it contains. We distinguish motional terms, depending on e or depending on
kT , where we know that kT is linear in e.

Loosely speaking, we could say that, inasmuch as the shape of W departs
from the original form assumed by V(0), every thing goes as if the mutual
interaction were somehow “modified by the presence of magnetic field.”

3.2.1. System at Rest

The particular case where pseudomomentum is purely longitudinal (say
kT 5 0) enjoys a particular simplicity. If we assume for a moment that k
coincides with kL , it is possible to find a frame where

›
k vanishes whereas

the electromagnetic field is purely magnetic. We refer to this situation as the
case at rest.

In this case, Ãz 5 z', Ãy 5 y', and (S)n,k simply reduces to y2
', since

kL coincides with k.
As zT ? k in (48) vanishes, we notice that (Ẑ #)/P#2

)n,k reduces to z2
'.

According to (47) and to a notation defined in Section 2, we can write

W 5 g(z2
', (P#2

)n,k, n)

where k ? F ? z vanishes in (49), so (P#2
)n,k reduces to k2 1 1–4 e2(F ? z)2. If

the mutual interaction does not depend on the energy, we end up with

6 In the case of isolated systems, there are arguments (e.g. ref. 15) for demanding that both P ?
p1 and P ? p2 have positive eigenvalues, which amounts to requiring that k2/2 . .n.. Provided
we follow this last condition also in the presence an of external field, one root only
remains admissible.

7 The rest case in strong fields has been considered by Koller et al. [17]. Motional effects have
been considered in the noncovariant literature, see ref. 18 and references therein.
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W 5 g(z2
', n). Thus, for energy-independent interactions, namely V(0) 5 g(Z/

P2, y ? P), W assumes the form g(z2
', n). In other words:

At rest, the magnetic field does not modify the mutual interaction, pro-
vided this interaction is not energy-dependent.

In contrast, if ­V(0)/­P2 does not vanish, the shape of W may substantially
depart from that of V(0) in strong fields, owing to the contribution of (F ? z)2

in (P #2
)n,k. This correction to V(0) is a genuine “three-body” term in this

sense that it vanishes if either the mutual interaction or the magnetic field
is turned off (pretending that the field is generated by a ficticious “third
body” located at infinity).

Looking again at Eq. (45), we see that, at rest, all surviving terms not
included in W can easily be identified as covariant generalizations of the
usual terms present in the nonrelativistic theory [4, 19] except for a piece of
R(2) which depends on the relative angular momentum; see contribution of
z ? F ? y/k2

L in formula (44). This contribution remains small for heavy systems
(k2 .. F ), but might be significant for light systems (k2 ,, F ) in a strong
magnetic field.

At first order in the field strength, however, the relative motion admits
no correction other than a term proportional to n (indeed F ? k vanishes).
For equal masses this term is zero and there is no departure from the motion
of an isolated system.

3.2.2. Motional Case

When kT is nonzero, we recognize the motional electric field contained
in z ? F ? k. For energy-dependent potentials, and even in a weak field, this
term contributes to W through (47). But of course, it may be neglected in
the case of slow motion in a weak field, where both e and F are considered
as first-order quantities, which entails that F ? k is a second-order quantity.
On one hand, this can be seen as a stability property of the neutral two-body
system under application of a constant field. But on the other hand, it forces
one to go beyond the weak-field, slow-motion approximation if one wishes to
compute significant corrections to the energy associated with relative motion.

4. CONCLUSION

The coupled Klein–Gordon equations describing a globally neutral sys-
tem have been reduced to a three-dimensional equation involving truly
motional terms and recoil effects in a covariant fashion. In this formulation
the particular symmetry associated with a constant magnetic field in space-
time is manifestly respected. After separation of the internal motion, and
after factorizing the dependence on relative time, the surviving number of
degrees of freedom is finally the same as in the nonrelativistic theory.



402 Droz-Vincent

We now have a clean theoretical basis for the study of relativistic bound
states in a constant magnetic field, the simplest of all the cases where an
external field is present.

In the reduction procedure it was essential to consider eigenstates of
pseudomomentum. The square of this vector plays the role of an effective
squared mass which can be, in principle, evaluated by solving the reduced
wave equation. But the eigenvalue problem involved in this equation is
crucially nonconventional, for the eigenvalue arises in a nonlinear way, even
if mutual interaction does not depend on the total energy. This situation
requires a refinement of conventional methods; the method devised in ref.
16 will help to carry out this task in the future.

Our formulas are quadratic in the field strength and offer a starting
point for investigating strong-field effects. In principle, they encompass all
kinematic possibilities of the system as a whole and permit a description of
ultrarelativistic situations, where .kT.2 . .kL.2.

In the present state of the art, we notice that, in a weak field, the slow
collective motion (first order in e) of opposite charges interacting through a
potential which does not depend on the energy escapes the above-mentioned
complication, but in this case the presence of an external field results in a
first-order Starck effect which obviously vanishes for generic shapes of the
mutual interaction potential. For the harmonic oscillator, for instance, this
remark indicates that the naive quark model enjoys some kind of stability
property. But if we have perturbation theory in mind, the computation of
significant corrections requires the setting of a nonconventional treatment.

In sofaras approximations are concerned, it is in order to realize that
two situations are possible: Either the magnetic field is considered (as in the
previous example) as a perturbation applied to the system, or, in contrast,
the mutual interaction is treated as a perturbation as in the helium atom.

In the latter case, the zeroth-order approximation describes two indepen-
dent particles moving in the magnetic field; in this unperturbed motion, the
transverse degrees of freedom are bound by the magnetic field (corrections
to the corresponding spectra are reserved for future work). We expect to
avoid the pathology of “continuous dissolution” [20, 21] for two reasons:
The particles we consider here have no spin, and we can impose positive
individual energies, requiring that both P ? p1 and P ? p2 have positive
eigenvalues.

The Ansatz which allows for a three-dimensional reduction in our covari-
ant framework automatically generates various terms in the wave equation.
We have seen that the importance of these terms depends on the strength of
the field and on the state of motion of the system as a whole. Inspection of
these terms indicates that, from a practical point of view, the shape of the
mutual interaction is “somehow modified” by the magnetic field. As can be
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read off from (49), the modification implied by (47) is quadratic in F and
may become dominant in strong fields provided V(0) is energy-dependent.
This point concerns most of the realistic two-body potentials. Further work
is needed in order to get beyond these qualitative indications.

For the sake of simplicity, we have focused here on scalar particles, but
naturally an extension to particles with spin is desirable. A generalization to
globally charged systems would also be of interest.

Let us finally mention that, in principle, the contact with more conven-
tional methods of quantum field theory could be improved, trying to derive
directly all our terms from a Bethe–Salpeter equation that takes the magnetic
field into account from the start. This would mean to remake the work of
Bijtebier and Broeckaert [21] in a way which respects the particular symmetry
of constant magnetic field, i.e., treating all the possible lab frames on the
same footing. To our knowledge, nobody has yet carried out this task.
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